A finite element model of heat transport in the human eye.
نویسنده
چکیده
A mathematical model of the human eye based on the bioheat transfer equation is developed. The intraocular temperature distribution is calculated using the Galerkin finite element method. A difficulty associated with the development of an accurate model of the human eye is the lack of reliable biological data available on the constants and parameters that are used in the model. These parameters include the thermal conductivities of the ocular tissues, the heat loss from the anterior corneal surface to the surroundings by convection and evaporation, and the convective heat loss from the sclera to the body core. The different values for the parameters reported in the ophthalmic literature are employed in the model, and the sensitivity of the temperature distribution to uncertainties in the parameters is investigated. A set of control parameter values is suggested for the normal human eye. The effect of the ambient temperature and the body-core temperature on the temperature distribution in the human eye is considered.
منابع مشابه
Thermal Analysis of Laser Hardening for Different Moving Patterns
Transient thermal field in laser surface hardening treatment of medium carbon steel was analyzed by employing both three-dimensional analytical model and finite element model. In finite element model the laser beam was considered as a moving plane heat flux to establish the temperature rise distribution in the work-piece, while in analytical model laser beam was considered as an internal heat s...
متن کاملHuman Eye Response to Thermal Disturbances
Human eye is one of the most sensitive parts of the body when exposed to a thermal heat flux. Since there is no barrier (such as skin) to protect the eye against the absorption of an external thermal wave, the external flux can readily interact with cornea. The modeling of heat transport through the human eye has been the subject of interest for years, but the application of a porous media mode...
متن کاملNumerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418
In this paper, a three-dimensional finite element model has been developed to simulate the laser-TIG hybrid welding (HLAW) of stainless steel 1.4418 with thickness of 4 mm. Transient temperature profile and dimensions of the fusion zone and heat affected zone (HAZ) during welding process are calculatedusing finite element method (FEM) and were solved in the ABAQUS/Standard software.The heat sou...
متن کاملNumerical and Experimental Study of Geometrical Dimensions on Laser-TIG Hybrid Welding of Stainless Steel 1.4418
In this paper, a three-dimensional finite element model has been developed to simulate the laser-TIG hybrid welding (HLAW) of stainless steel 1.4418 with thickness of 4 mm. Transient temperature profile and dimensions of the fusion zone and heat affected zone (HAZ) during welding process are calculatedusing finite element method (FEM) and were solved in the ABAQUS/Standard software.The heat sou...
متن کاملDevelopment of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature
A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 33 2 شماره
صفحات -
تاریخ انتشار 1988